mastodon.online is one of the many independent Mastodon servers you can use to participate in the fediverse.
A newer server operated by the Mastodon gGmbH non-profit

Server stats:

10K
active users

#polars

2 posts2 participants0 posts today
young man yells at the cloud<p>If anyone is looking at using <a href="https://mastodon.social/tags/polars" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polars</span></a> for dataframes in <a href="https://mastodon.social/tags/rust" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rust</span></a> , having done it myself for a few months at work, here are my thoughts:</p><p>1. It works and it's fast. I'd use it again.<br>2. The /rust-specific/ documentation is really barebones. However, the python docs are good, so you can read those and the translation isn't too bad. However, this is definitely the largest pain point.</p><p>If anyone has any questions about using the crate, feel free to ask and I'll answer if I can!</p>
Michael Sumner<p>wow, <a href="https://rstats.me/tags/polars" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polars</span></a> is good - just read-from-url filter/select/unique super straightforward</p><p><a href="https://rstats.me/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a></p>
narkode<p>I am transforming a project from <a href="https://nerdculture.de/tags/pandas" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pandas</span></a> to <a href="https://nerdculture.de/tags/polars" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polars</span></a> and I already like it! I don't want to talk bad about <a href="https://nerdculture.de/tags/pandas" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pandas</span></a>, it did a lot for the data science community. But, beside of being blazingly fast, the syntax of <a href="https://nerdculture.de/tags/polars" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polars</span></a> is much more logic and consistent!</p>
Towards Data Science<p>Struggling with slow GIS processing? Tony Albanese's article demonstrates a lightning-fast method for generating transects using <a href="https://hachyderm.io/tags/Geopandas" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Geopandas</span></a> and <a href="https://hachyderm.io/tags/Polars" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Polars</span></a>, reducing processing time from days to seconds. </p><p><a href="https://towardsdatascience.com/harnessing-polars-and-geopandas-to-generate-millions-of-transects-in-seconds-d37b176a0b57/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">towardsdatascience.com/harness</span><span class="invisible">ing-polars-and-geopandas-to-generate-millions-of-transects-in-seconds-d37b176a0b57/</span></a></p>
Habr<p>Polars для обработки JSON и Parquet</p><p>Привет, Хабр! Сегодня рассмотрим тему обработки временных рядов с помощью Polars. Начну с того, что в Pandas для агрегации временных рядов принято использовать метод resample() . Он удобен и привычен, но имеет свои ограничения по производительности и гибкости. Polars, в свою очередь, имеет метод groupby_dynamic() , который позволяет группировать данные по динамическим временным интервалам.</p><p><a href="https://habr.com/ru/companies/otus/articles/892812/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">habr.com/ru/companies/otus/art</span><span class="invisible">icles/892812/</span></a></p><p><a href="https://zhub.link/tags/polars" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polars</span></a> <a href="https://zhub.link/tags/%D0%B2%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D1%8B%D0%B5_%D1%80%D1%8F%D0%B4%D1%8B" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>временные_ряды</span></a> <a href="https://zhub.link/tags/%D0%BE%D0%B1%D1%80%D0%B0%D0%B1%D0%BE%D1%82%D0%BA%D0%B0_%D0%B2%D1%80%D0%B5%D0%BC%D0%B5%D0%BD%D0%BD%D1%8B%D1%85_%D1%80%D1%8F%D0%B4%D0%BE%D0%B2" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>обработка_временных_рядов</span></a> <a href="https://zhub.link/tags/%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D1%82%D0%B8%D0%BA%D0%B0" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>аналитика</span></a></p>
PyCharm Blog<p>Polars vs. pandas – Python のデータフレームライブラリを徹底比較<br><a href="https://techhub.social/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://techhub.social/tags/Pycharm" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Pycharm</span></a> <a href="https://techhub.social/tags/Datascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Datascience</span></a> <a href="https://techhub.social/tags/Pandas" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Pandas</span></a> <a href="https://techhub.social/tags/Polars" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Polars</span></a></p><p><a href="https://blog.jetbrains.com/pycharm/2025/02/polars-vs-pandas" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">blog.jetbrains.com/pycharm/202</span><span class="invisible">5/02/polars-vs-pandas</span></a></p>
Cuducos<p>Do I know any <a href="https://tech.lgbt/tags/Polars" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Polars</span></a> contributor or maintainer? I would love to help with that bug/exploration, but I am not sure where to start!</p><p><a href="https://github.com/pola-rs/polars/issues/21851" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">github.com/pola-rs/polars/issu</span><span class="invisible">es/21851</span></a> <a href="https://tech.lgbt/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://tech.lgbt/tags/Rust" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Rust</span></a></p>
EuroSciPy<p>Working on core array computing libraries that power <a href="https://fosstodon.org/tags/scientificPython" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scientificPython</span></a>? <a href="https://fosstodon.org/tags/EuroSciPy2025" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>EuroSciPy2025</span></a> wants your proposals on optimized array operations, vectorization techniques, and numerical foundations. Submit your groundbreaking work!</p><p><a href="https://pretalx.com/euroscipy-2025/cfp" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">pretalx.com/euroscipy-2025/cfp</span><span class="invisible"></span></a></p><p><a href="https://fosstodon.org/tags/ScientificComputing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ScientificComputing</span></a> <a href="https://fosstodon.org/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://fosstodon.org/tags/EuroSciPy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>EuroSciPy</span></a> <a href="https://fosstodon.org/tags/numpy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>numpy</span></a> <a href="https://fosstodon.org/tags/scipy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>scipy</span></a> <a href="https://fosstodon.org/tags/pandas" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pandas</span></a> <a href="https://fosstodon.org/tags/polars" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polars</span></a></p>
Data Science<p>Polars is a lightning fast DataFrame library/in-memory query engine with parallel execution and cache efficiency. And now you can use is with the tidyverse syntax: <a href="https://www.tidypolars.etiennebacher.com/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">tidypolars.etiennebacher.com/</span><span class="invisible"></span></a> <a href="https://genomic.social/tags/rstats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rstats</span></a> <a href="https://genomic.social/tags/polars" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polars</span></a> <a href="https://genomic.social/tags/optimisation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>optimisation</span></a></p>
Mainmatter<p>🌊&nbsp; Kisters provides real-time flood warnings—but traffic spikes made scaling costly. We helped them build a Rust-based system using Polars to process data efficiently across servers, edge, and browsers (WASM)—keeping performance high and costs low.</p><p>Read more ➡️ <a href="https://mainmatter.com/cases/kisters/?utm_source=linkedin" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">mainmatter.com/cases/kisters/?</span><span class="invisible">utm_source=linkedin</span></a> </p><p><a href="https://fosstodon.org/tags/rustlang" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rustlang</span></a> <a href="https://fosstodon.org/tags/WASM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>WASM</span></a> <a href="https://fosstodon.org/tags/edgecomputing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>edgecomputing</span></a> <a href="https://fosstodon.org/tags/cloudoptimization" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cloudoptimization</span></a> <a href="https://fosstodon.org/tags/polars" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polars</span></a></p>
Wolf<p>At last night’s <span class="h-card" translate="no"><a href="https://hachyderm.io/@mug" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>mug</span></a></span> meeting we looked at a lot of different solutions to <a href="https://hachyderm.io/tags/adventofcode" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>adventofcode</span></a> day 1 in many different languages. Two that were very interesting to me were <a href="https://hachyderm.io/tags/Zig" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Zig</span></a> and <a href="https://hachyderm.io/tags/haskell" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>haskell</span></a>. The way these two languages worked was really quite fascinating. After seeing real code in these two languages, I can tell they are not for me; but they were interesting and illuminating nonetheless. </p><p>There was a solution entirely in <a href="https://hachyderm.io/tags/SQL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>SQL</span></a>. Another in <a href="https://hachyderm.io/tags/vim9script" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>vim9script</span></a>. Another in <a href="https://hachyderm.io/tags/swiftlang" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>swiftlang</span></a> <a href="https://hachyderm.io/tags/swift" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>swift</span></a> (I don’t think that one’s in the repo yet). I wrote several implementations myself. The one I felt most proud of is <a href="https://hachyderm.io/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> with the core written in <a href="https://hachyderm.io/tags/rustlang" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rustlang</span></a> <a href="https://hachyderm.io/tags/rust" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rust</span></a> tied together with <a href="https://hachyderm.io/tags/PyO3" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PyO3</span></a>. The one I felt was maybe the best tool for the job was entirely based on <a href="https://hachyderm.io/tags/pandas" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pandas</span></a>. As I said in a previous post, I tried to solve it in <a href="https://hachyderm.io/tags/polars" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polars</span></a>, but the API exposed by Polars at least as far as I could tell, made it no better than simple lists in Python. I need to get deeper knowledge here. </p><p>The repo lives here: <a href="https://github.com/MichiganUnixUserGroup/MUG-2025-03-11-Advent-of-Code" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">github.com/MichiganUnixUserGro</span><span class="invisible">up/MUG-2025-03-11-Advent-of-Code</span></a>.</p>
Eric R. Scott<p>There are now so many "backends" for {dplyr}—duckdb with {duckplyr}, polars with {tidypolars}, various database engines with {dbplyr}, {data.table} with {dtplyr}. Is there a blog post or flow chart somewhere with pros and cons of each? Like, comparisons of memory requirements, speed, and how likely they are to "just work"?</p><p><a href="https://fosstodon.org/tags/rstats" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rstats</span></a> <a href="https://fosstodon.org/tags/duckdb" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>duckdb</span></a> <a href="https://fosstodon.org/tags/dplyr" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dplyr</span></a> <a href="https://fosstodon.org/tags/tidyverse" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tidyverse</span></a> <a href="https://fosstodon.org/tags/polars" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polars</span></a></p>
N-gated Hacker News<p>Ah, nothing screams "cutting-edge innovation" like using <a href="https://mastodon.social/tags/Parquet" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Parquet</span></a> and <a href="https://mastodon.social/tags/Polars" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Polars</span></a> for text embeddings. 🤣 Because, clearly, what the AI world needed was some spreadsheet nostalgia. And don't forget, everyone desperately needed to know how to embed 32,254 Magic the Gathering cards. 🧙‍♂️💾 Truly groundbreaking stuff!<br><a href="https://minimaxir.com/2025/02/embeddings-parquet/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">minimaxir.com/2025/02/embeddin</span><span class="invisible">gs-parquet/</span></a> <a href="https://mastodon.social/tags/cuttingedgeinnovation" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>cuttingedgeinnovation</span></a> <a href="https://mastodon.social/tags/textembeddings" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>textembeddings</span></a> <a href="https://mastodon.social/tags/MagicTheGathering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MagicTheGathering</span></a> <a href="https://mastodon.social/tags/AIhumor" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AIhumor</span></a> <a href="https://mastodon.social/tags/HackerNews" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HackerNews</span></a> <a href="https://mastodon.social/tags/ngated" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ngated</span></a></p>
Hacker News<p>The Best Way to Use Text Embeddings Portably Is with Parquet and Polars — <a href="https://minimaxir.com/2025/02/embeddings-parquet/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">minimaxir.com/2025/02/embeddin</span><span class="invisible">gs-parquet/</span></a><br><a href="https://mastodon.social/tags/HackerNews" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>HackerNews</span></a> <a href="https://mastodon.social/tags/TextEmbeddings" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TextEmbeddings</span></a> <a href="https://mastodon.social/tags/Parquet" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Parquet</span></a> <a href="https://mastodon.social/tags/Polars" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Polars</span></a> <a href="https://mastodon.social/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> <a href="https://mastodon.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a></p>
benrutter<p>Was noodling around with Gleam a while back, needed a dataframe library and set up a half-baked interface for polars.</p><p>I can't beleive how easy the js ffi made it! Language FFI is such a hidden superpower, more of this please from bew languages! 😍</p><p><a href="https://mastodon.green/tags/programming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>programming</span></a> <a href="https://mastodon.green/tags/gleam" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>gleam</span></a> <a href="https://mastodon.green/tags/polars" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polars</span></a></p>
Alexandre B A Villares 🐍<p>"Plotando estatísticas básicas com <a href="https://ciberlandia.pt/tags/Polars" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Polars</span></a> e <a href="https://ciberlandia.pt/tags/Matplotlib" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Matplotlib</span></a> - <a href="https://ciberlandia.pt/tags/NLP" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NLP</span></a> 04 " <span class="h-card" translate="no"><a href="https://bolha.us/@dunossauro" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>dunossauro</span></a></span> <a href="https://ciberlandia.pt/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a></p><p><a href="https://www.youtube.com/watch?v=4HpSFIekqDw" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">youtube.com/watch?v=4HpSFIekqD</span><span class="invisible">w</span></a> </p><p>Hoje eu aprendi uma ideia ótima do Dunossauro que é imaginar que o ax do fig, ax do matplotlib (axis/eixo) é como uma haste onde penduramos as coisas! Como é fundamental o trabalho dele pra nossa comunidade.</p><p>Update: inicialmente achei que era uma tradução corrente mas ele me explicou que não.</p>
Jim Gardner<p>Does anyone have advice for unit testing a Polars Python expression? Say I have:</p><p>def my_func(a, b):<br> return (pl.col(a) / pl.col(b))</p><p>How do you unit test? We want to compare the result of this function to an expectation. At the moment we’re wrapping the result in str(), which gives us a stringified version of the expression. Then we assert that it is equal to the stringified expression that we would expect.</p><p>It works, just feels a little bit fragile. Unfortunately you can’t compare expressions directly with the equality operator ==. And polars.testing doesn’t have asserts for it either.</p><p>(We are of course also going to have integration tests, where the expression actually gets used on a df fixture)</p><p><span class="h-card" translate="no"><a href="https://bird.makeup/users/jeroenhjanssens" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>jeroenhjanssens</span></a></span> <br><a href="https://hachyderm.io/tags/Polars" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Polars</span></a> <a href="https://hachyderm.io/tags/Python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Python</span></a> <a href="https://hachyderm.io/tags/PyData" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>PyData</span></a></p>
Isa Bernardini<p>Une auteure de <a href="https://mastodon.social/tags/polars" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polars</span></a> à suivre assurément. J’en ai lu plusieurs d’elle, dont «&nbsp;Block 46&nbsp;». Voici son «&nbsp;dernier&nbsp;» sorti.<br>Je ne gagne absolument rien à faire sa pub, je suis juste une personne qui aime ce qu’elle <a href="https://mastodon.social/tags/%C3%A9crit" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>écrit</span></a> et représente. Une bien belle personne.</p>
Claudine Layre<p><a href="https://maisonjuliengracq.fr/evenement/affaire-classee-noir-sur-loire/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">maisonjuliengracq.fr/evenement</span><span class="invisible">/affaire-classee-noir-sur-loire/</span></a> <a href="https://mastodon.social/tags/culture" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>culture</span></a> <a href="https://mastodon.social/tags/litt%C3%A9rature" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>littérature</span></a> <a href="https://mastodon.social/tags/polars" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polars</span></a></p>
Markus Suhr<p>Just caught up with the recent Delta Lake webinar, </p><p>&gt; Revolutionizing Delta Lake workflows on AWS Lambda with Polars, DuckDB, Daft &amp; Rust</p><p>Some interesting hints there regarding lightweight processing of big-ish data. Easy to relate to any other framework instead of Lambda, e.g. <a href="https://gruene.social/tags/ApacheAirflow" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ApacheAirflow</span></a> tasks</p><p><a href="https://youtu.be/BR9oFD0QMAs" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">youtu.be/BR9oFD0QMAs</span><span class="invisible"></span></a></p><p><a href="https://gruene.social/tags/dataengineering" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dataengineering</span></a> <a href="https://gruene.social/tags/datascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascience</span></a> <a href="https://gruene.social/tags/duckdb" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>duckdb</span></a> <a href="https://gruene.social/tags/daft" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>daft</span></a> <a href="https://gruene.social/tags/polars" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>polars</span></a> <a href="https://gruene.social/tags/pandas" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pandas</span></a> <a href="https://gruene.social/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> <a href="https://gruene.social/tags/spark" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>spark</span></a> <a href="https://gruene.social/tags/deltalake" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>deltalake</span></a> <a href="https://gruene.social/tags/databricks" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>databricks</span></a> <a href="https://gruene.social/tags/airflow" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>airflow</span></a> <a href="https://gruene.social/tags/bigdata" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>bigdata</span></a> <a href="https://gruene.social/tags/smalldata" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>smalldata</span></a></p>